## The Activity of Several Molybdenum Compounds for the Methanation of CO<sub>2</sub>

MASAHIRO SAITO<sup>1</sup> AND ROBERT B. ANDERSON

Department of Chemical Engineering and Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada

Received March 10, 1980; revised August 27, 1980

Several molybdenum compounds-oxides, sulfide, metal, carbide, and nitride—were prepared, and their catalytic properties in the hydrogenation of CO<sub>2</sub> at 350°C were investigated and compared with those of nickel and iron. The initial specific activities, rates per unit surface area of catalyst, decreased in the sequence Ni > Mo carbide > Mo metal > Mo nitride > MoO<sub>2</sub> > MoS<sub>2</sub> > MoO<sub>3</sub>. Iron deactivated so rapidly that its initial activity could not be determined. The molybdenum compounds produced very much smaller amounts of C<sub>2</sub> and C<sub>3</sub> hydrocarbons in the hydrogenation of CO<sub>2</sub> than in that of CO. Iron produced the largest amount of higher hydrocarbons from CO<sub>2</sub>, and Ni only CH<sub>4</sub>. The molybdenum compounds, except MoS<sub>2</sub> and MoO<sub>3</sub>, had high activities for watergas-shift reaction.

## INTRODUCTION

The previous paper (1) described the preparation of a number of molybdenum compounds—oxides, sulfide, metal, carbide, and nitride—and their catalytic properties in the hydrogenation of CO at  $350^{\circ}$ C and 1 atm, and compared them with nickel and iron. In the present study, the same molybdenum preparations and nickel and iron were used in the hydrogenation of CO<sub>2</sub>. The results for the reactions of CO and CO<sub>2</sub> are compared.

#### EXPERIMENTAL

The flow system of the previous study (1) was used for the pretreatment of catalyst samples and also for the methanation studies. The hydrogenation of CO<sub>2</sub> was studied at 350°C and 1 atm. The surface area of each sample was measured by the physical adsorption of nitrogen at -195°C using a sorptometer. Phases present in the samples were identified by powder X-ray diffraction. Carbon and sulfur in the samples were determined by Leco analyzers and nitrogen by the Kjeldahl method.

<sup>1</sup> Present address: National Research Institute for Pollution and Resources, Tsukuba, Ibaraki, Japan.

Catalyst samples were prepared by the methods given in our previous paper (1). A new set of catalysts was prepared for the present work; however, powder X-ray diffraction indicated the same phases as those reported in Table 1 of the previous paper (1) and the surface areas and chemisorptions of H<sub>2</sub> and CO were about the same as those reported previously, as shown in Table 1. The  $3.7H_2 + 1CO_2$  synthesis gas was furnished premixed in a cylinder by Matheson of Canada.

### **RESULTS AND DISCUSSION**

The activity of MoO<sub>3</sub> was negligible. Figure 1 shows the activity of MoO<sub>2</sub> for methanation of CO<sub>2</sub>. The activity is expressed as the conversion of CO<sub>2</sub> to C<sub>1</sub>-C<sub>3</sub> hydrocarbons,  $X_{\rm HC}$ , and as the rate of formation of hydrocarbons,  $r_{\rm HC}$ , which was calculated by  $r_{\rm HC} = X_{\rm HC}F/W$ , where F is the feed rate of CO<sub>2</sub> (moles per minute) and W is the weight of the catalyst (grams). The activity decreased slightly with time on stream, while the concentration of oxygen and carbon and the surface area changed very little. The initial activity for CO<sub>2</sub> methanation. The ratio of C<sub>2</sub>/C<sub>1</sub> in the CO<sub>2</sub>

| TABLE | 1 |
|-------|---|
|-------|---|

| Catalyst         | Composition (atom/atom) | Phases detected by<br>X-ray diffraction | Surface area (m <sup>2</sup> /g) | Gas upt<br>25°C (μ | ake at<br>mol/g) |
|------------------|-------------------------|-----------------------------------------|----------------------------------|--------------------|------------------|
|                  |                         |                                         |                                  | СО                 | H <sub>2</sub>   |
| MoO <sub>3</sub> | O/Mo = 3.0              | MoO <sub>3</sub>                        | 1.6                              | 0.3                | 0.0              |
| MoO <sub>2</sub> | O/Mo = 1.91             | $MoO_2$ , $MoO(?)$                      | 75.0                             | 192.               | 11.5             |
| MoS <sub>2</sub> | S/Mo = 2.0              | MoS <sub>2</sub> (broad)                | 20.4                             | 58.4               | 4.9              |
| Мо               |                         | Мо                                      | 7.2                              | 24.6               | 9.3              |
| Mo-C-4           | C/Mo = 0.44             | $Mo_2C$ , $Mo(trace)$                   | 7.0                              | 35.0               | 12.9             |
| Mo-N             | N/Mo = 0.60             | $\gamma$ -Mo <sub>2</sub> N, Mo(trace)  | 6.8                              | 43.2               | 13.2             |
| Ni               | _                       | Ni                                      | 1.2                              |                    | 14.1             |
| Fe               | _                       | α-Fe                                    | 8.0                              | 44.7ª              | 28.9             |

Compositions and Properties of Catalysts Prepared in This Study

<sup>a</sup> The difference between an original isotherm at  $-195^{\circ}$ C and a second isotherm at  $-195^{\circ}$ C following evacuation at  $-78^{\circ}$ C.

methanation was about one-sixth of that in CO methanation. The reverse water-gasshift reaction occurred simultaneously with methanation. The WGS value, defined as

$$p_{\rm CO_2} \times p_{\rm H_2} / (p_{\rm CO} \times p_{\rm H_2O}),$$

was used as a measure of the approach to equilibrium. The activity for water-gas shift was expressed by the conversion of  $CO_2$  to CO,  $X_w$ , and by the rate of forma-



FIG. 1. Hydrogenation of CO<sub>2</sub> on MoO<sub>2</sub> at 350°C and 1 atm, using  $3.7 H_2 + 1 CO_2$  feed.  $W/F = 2110 \text{ g} \cdot \text{min/mol}$ .

tion of CO,  $r_W$ , obtained from  $r_W = X_W F/W$ . However,  $r_W$  may give incorrect values when  $X_W$  is greater than 20% of the equilibrium conversion of the watergas shift. When no methanation takes place, the equilibrium conversion of CO<sub>2</sub> to CO by the reverse shift is 33% for the present reaction conditions. The WGS value and  $X_W$  were near the equilibrium value, indicating that MoO<sub>2</sub> had a much higher activity for water-gas shift than for methanation of CO<sub>2</sub>.

 $MoS_2$  had a lower activity than  $MoO_2$  for hydrogenation of  $CO_2$ . Its activity changed slightly during the reaction, as shown in Fig. 2, but the sulfur content and surface area remained constant. The activity of  $MoS_2$ for  $CO_2$  methanation was one-seventh of that for CO methanation, and no higher hydrocarbons were produced in  $CO_2$ methanation. The activity of  $MoS_2$  for the water-gas shift was also very much smaller than that of  $MoO_2$ .

Figure 3 shows that the activity of Mo metal for  $CO_2$  methanation increased with time and reached a constant value in 30 hr at about twice its initial value. Although the carbon content increased substantially during methanation, the X-ray diffraction pattern did not change. The initial activity of Mo metal for  $CO_2$  methanation was 1/16th



FIG. 2. Hydrogenation of CO<sub>2</sub> on MoS<sub>2</sub> at 350°C and 1 atm, using  $3.7 H_2 + 1 CO_2$  feed.  $W/F = 2310 g \cdot min/mol$ .

of that for CO methanation. The  $C_2/C_1$  ratio increased slightly with time, but was about 1/20th of that for CO methanation. The activity for water-gas shift also increased with time, and was very much higher than that for CH<sub>4</sub> production. The molybdenum carbide Mo-C-4, prepared by carburization of the metal with a mixture of  $C_3H_8$  and  $H_2$ (Fig. 4), had the highest initial activity of all the molybdenum compounds in this study. The initial activity for CO<sub>2</sub> methanation was about one-fourth of that for CO metha-



FIG. 3. Hydrogenation of CO<sub>2</sub> on Mo metal at 350°C and 1 atm, using 3.7  $H_2$  + 1 CO<sub>2</sub> feed. W/F = 1710 g · min/mol.



FIG. 4. Hydrogenation of CO<sub>2</sub> on molybdenum carbide, Mo-C-4, at 350°C and 1 atm, using 3.7 H<sub>2</sub> + 1 CO<sub>2</sub> feed. W/F = 1640 g·min/mol.

nation. The activity of Mo-C-4 decreased sharply with time, but the deactivation rate in CO<sub>2</sub> methanation was around one-tenth of that in CO methanation. The carbon content changed very little during methanation but the surface area decreased about 15%. The C<sub>2</sub>/C<sub>1</sub> ratio in CO<sub>2</sub> methanation was about half of that in CO methanation, whereas the C<sub>3</sub>/C<sub>1</sub> ratio in CO<sub>2</sub> methanation was about the same as that in CO methanation. The WGS value and  $X_w$  were near the equilibrium values.

The activity of Mo-N in Fig. 5 increased with time to a constant value at 25 hr; this pattern was similar to that for Mo metal. The surface area remained constant, but the nitrogen content decreased about 10% during methanation. The initial activity of Mo-N for CO<sub>2</sub> methanation was about 1/30th of that for CO methanation. No higher hydrocarbons were formed in CO<sub>2</sub> methanation, whereas both C<sub>2</sub> and C<sub>3</sub> hydrocarbons were formed in CO methanation. The WGS value for Mo-N and  $X_W$ remained nearly constant at 68 and 19%, respectively; the activity of Mo-N for water-gas-shift reaction was very much higher



FIG. 5. Hydrogenation of  $CO_2$  on molybdenum nitride at 350°C and 1 atm, using 3.7 H<sub>2</sub> + 1 CO<sub>2</sub> feed. W/F = 1690g · min/mol.

than that for  $CO_2$  methanation.

The activities of unsupported iron and nickel for  $CO_2$  methanation were examined for comparison with the activities of the molybdenum compounds, and also with the activities of the iron and the nickel for CO methanation. The results for iron are shown in Fig. 6, and data for nickel in Fig. 7.

For iron the patterns of changes in the



FIG. 6. Hydrogenation of CO<sub>2</sub> on Feat 350°C and 1 atm, using 3.7 H<sub>2</sub> + 1 CO<sub>2</sub> feed.  $W/F = 608 \text{ g} \cdot \text{min/mol}$ .



FIG. 7. Hydrogenation of CO<sub>2</sub> on Ni at 350°C and 1 atm, using 3.7 H<sub>2</sub> + 1 CO<sub>2</sub> feed. W/F = 269 g · min/mol.

activities for methanation and for the water-gas shift and in the  $C_2/C_1$  and  $C_3/C_1$ ratios in CO<sub>2</sub> methanation were very similar to those in CO methanation; however, the initial values could not be determined because of the rapid deactivation of the iron. The steady-state activity for CO<sub>2</sub> methanation was 80% of that for CO methanation, and the initial  $C_2/C_1$  and  $C_3/C_1$  ratios in  $CO_2$  methanation were about the same as those in CO methanation. The carbon content (C/Fe) of the sample after 48 hr was 0.76, 90% of that in CO methanation, and  $\chi$ -Fe<sub>2</sub>C (Hägg carbide) and  $\alpha$ -Fe were detected in the sample by X-ray diffraction. The total surface area of the sample increased as much as in CO methanation, probably due to the area of elemental carbon deposited on the catalyst.

The activity of the nickel did not decrease as sharply as in CO methanation; the activity at 50 hr was 10% higher than that in CO methanation. The amount of carbon deposited during 58 hr was negligible. These results may support Anderson's suggestion that methanation of CO<sub>2</sub> may have advantages such as longer catalyst life, because many deleterious processes affecting catalyst performance seem attributable to the presence of CO, such as formation of

| Catalyst         | Surface<br>area          | Initial<br>rate | Specific<br>rate <sup>a</sup> | Turnover<br>(sec <sup>-1</sup> | number<br>× 10 <sup>3</sup> ) | Distribu<br>hydroc:            | ttion of<br>arbons             | of CO <sub>2</sub> to | Rate of CO formation $(r_w)$ | ₩GS¢    |
|------------------|--------------------------|-----------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|-----------------------|------------------------------|---------|
|                  | ( <b>m</b> -/ <b>g</b> ) | (g unuliound)   | (-m · mm/ioma)                | Tb                             | 110                           | prod                           | ncea                           |                       | (g · mm). mm)                |         |
|                  |                          |                 |                               | 2                              | ,II                           | C <sub>2</sub> /C <sub>1</sub> | C <sub>3</sub> /C <sub>1</sub> | (%)                   |                              |         |
| MoO <sub>3</sub> | 1.6                      | 0.0             | 0.0                           | 0.0                            | 0.0                           |                                |                                | 0.0                   | 0.0                          |         |
| MoO <sub>2</sub> | 75.0                     | 8.5             | 0.11                          | 0.74                           | 6.2                           | 0.01                           | 0.00                           | 26.0                  | 123.                         | 28.2    |
| MoS <sub>2</sub> | 20.4                     | 1.1             | 0.05                          | 0.31                           | 1.9                           | 0.00                           | 0.00                           | 1.6                   | 7.0                          | 10,800. |
| Мо               | 7.2                      | 3.6             | 0.50                          | 2.4                            | 3.2                           | 0.01                           | 0.00                           | 17.0                  | 99.4                         | 96.5    |
| Mo-C-4           | 7.0                      | 43.8            | 6.26                          | 20.9                           | 28.3                          | 0.10                           | 0.04                           | 23.8                  | 145.                         | 24.3    |
| Mo-N             | 6.8                      | 1.1             | 0.16                          | 0.42                           | 0.69                          | 0.00                           | 0.00                           | 20.6                  | 122.                         | 57.2    |
| Ni               | 1.2                      | 285.            | 238.                          |                                | 168.                          | 0.00                           | 0.00                           | 6.3                   | 235.                         | 180.    |
| Fe               | 8.0                      | >143.           | >17.9                         | >53.3                          | >41.2                         | >0.24                          | >0.08                          | > 18.7                | > 308.                       | >51.4   |

**TABLE 2** 

<sup>c</sup> Based on H<sub>a</sub> chemisorption. <sup>d</sup> When no hydrocarbon formation takes place, the equilibrium conversion of CO<sub>2</sub> to CO by the water-gas-shift reaction at 350°C is 33.03%. <sup>e</sup> WGS =  $(CO_2)(H_2)/(CO)(H_2O)$ . At equilibrium at 350°C, WGS = 21.0.

# SAITO AND ANDERSON

elemental carbon, nickel carbide, and nickel carbonyl (2). No higher hydrocarbons were produced in CO<sub>2</sub> methanation on Ni.  $r_{\rm HC}$  and  $r_{\rm W}$  were about equal.

The data obtained in this study are summarized in Table 2. The  $MoO_2$  and the  $MoS_2$  had larger surface areas than the other molybdenum compounds, but their specific rates and turnover numbers were less than those of the Mo metal. The specific activities of the catalysts used, except for iron, decreased in the sequence,

$$\begin{array}{l} \text{Ni} > \text{Mo-C-4} > \text{Mo} > \text{Mo-N} \\ > \text{MoO}_2 > \text{MoS}_2 > \text{MoO}_3. \end{array}$$

Iron probably should be placed between Ni and Mo-C-4 in the order of activity. The molybdenum compounds produced much smaller amounts of C2 and C3 hydrocarbons in CO<sub>2</sub> methanation than in CO methanation. Only methane was formed from CO<sub>2</sub> on the nickel catalyst. Iron produced the largest amounts of  $C_2$  and  $C_3$  hydrocarbons of all the catalysts used. The molybdenum compounds, except for  $MoS_2$  and  $MoO_3$ , were very active for the water-gas shift. In  $CO_2$  methanation iron and nickel were as active as molybdenum compounds in the water-gas shift; however, in CO methanation Fe and Ni were less active in the water-gas shift.

The data on the hydrogenations of  $CO_2$ and CO (1) are compared in Table 3; the main observations are:

(a) All of the catalysts hydrogenated  $CO_2$ less rapidly than CO and they produced smaller amounts of higher hydrocarbons from  $CO_2$  than from CO. Apparently a moderate concentration of CO in the gas phase is a requisite for production of substantial amounts of higher hydrocarbons. Iron had the largest tendency for producing higher hydrocarbons and nickel the least.

(b) Molybdenum carbide had the largest initial activity of the molybdenum catalysts studied and produced the largest yields of higher hydrocarbons.  $MoO_3$  had the lowest activity. The carbide lost activity rapidly in the first few hours of synthesis.

| Catalyst |                        |                                                               | 3.7 H <sub>2</sub> · | + 1 CO <sub>2</sub> |                        |         |      |                        |                                                               | 3.1 H <sub>2</sub> + | -100 |                        |                     |     |
|----------|------------------------|---------------------------------------------------------------|----------------------|---------------------|------------------------|---------|------|------------------------|---------------------------------------------------------------|----------------------|------|------------------------|---------------------|-----|
|          |                        | Initial                                                       |                      |                     | Afte                   | r 10 hr |      |                        | Initial                                                       |                      |      | Afte                   | 10 hr               |     |
|          | Rate<br>(µmol/min · g) | Specific<br>rate <sup>a</sup><br>(μmol/min · m <sup>2</sup> ) | $C_1 + C_3$<br>$C_1$ | wGSc                | Rate<br>(µmol/min · g) |         | WGS  | Rate<br>(µmol/min · g) | Specific<br>rate <sup>a</sup><br>(μmol/min · m <sup>2</sup> ) | $c_1 + c_3^{\circ}$  | wgs  | Rate<br>(µmol/min · g) | $C_1 + C_3^{\flat}$ | wGS |
| MoO.     | 8.5                    | 0,11                                                          | 0.01                 | 28.2                | 7.0                    | 0.00    | 4    | 45.9                   | 0.65                                                          | 0.07                 | 20.0 | 45.9                   | 0.07                | 20  |
| MoS,     | 1.1                    | 0.05                                                          | 0.00                 | 10,800.0            | 1.3                    | 0.00    | 8500 | 7.9                    | 0.34                                                          | 0.04                 | 0.3  | 6.2                    | 0.06                | 0.3 |
| Mo       | 3.6                    | 0.50                                                          | 0.01                 | 96.5                | 6.2                    | 0.02    | 39   | 61.5                   | 8.20                                                          | 0.30                 | 21.0 | 37.0                   | 0.18                | 18  |
| Mo-C-4   | 43.8                   | 6.26                                                          | 0.14                 | 24.3                | 15.0                   | 0.10    | 27   | 181.0                  | 24.8                                                          | 0.18                 | 18.5 | 15.0                   | 0.21                | 13  |
| Mo-N     | [.]                    | 0.16                                                          | 0.00                 | 57.2                | 1.6                    | 0.00    | 65   | 37.4                   | 5.12                                                          | 0.23                 | 21.3 | 44.0                   | 0.14                | 81  |
| ïz       | 285.0                  | 238.0                                                         | 0.00                 | 180.0               | 265.0                  | 0.00    | 168  | 504.0                  | 520.0                                                         | 0.01                 | 0.1  | 325.0                  | 0.01                | 0.1 |
| Fe       | > 143.0                | >17.9                                                         | >0.32                | <51.4               | 20.0                   | 0.03    | 600  | >93.0                  | >11.0                                                         | >0.30                | >3.4 | 24.0                   | 0.00                | 0.0 |

Comparison of Results for Hydrogenations of CO<sub>2</sub> and CO

TABLE

301

<sup>b</sup> Distribution of hydrocarbons produced.  $\nabla GS = (CO_2)(H_2)/(CO)(H_2O)$ . At equilibrium at 350°C, WGS = 21.0. (c) The oxide, nitride, and metallic molybdenum had modest and relatively constant activity. Iron deactivated rapidly in the methanation reactions of both CO and  $CO_2$ . Iron catalysts usually do not perform properly in tests at atmospheric pressure (3). The activity of nickel was more stable in the hydrogenation of  $CO_2$  than in that of CO, as has been observed before (2).

(d) Molybdenum catalysts, except  $MoS_2$ and  $MoO_3$ , were active in the water-gas shift; their activities for the water-gas shift were larger than those for synthesis reactions. Iron and nickel were active for the reverse water-gas shift in  $CO_2$  methanation, but were not very active in the forward-shift reaction in CO methanation.

(e) Molybdenum compounds were as active in  $1H_2 + 1CO$  as in  $3H_2 + 1CO$  feed, but Ni and Fe were substantially less active in a CO-rich gas.

The present paper shows that molybde-

num catalysts have a modest activity in methanation reactions at  $350^{\circ}$ C and produce small amounts of higher hydrocarbons, confirming the results of an earlier study (4).

#### ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of this study by Energy, Mines and Resources, Canada, and thank Dr. D. B. Shah and Mr. C. B. Lee for helpful discussions.

#### REFERENCES

- 1. Saito, M., and Anderson, R. B., J. Catal. 63, 438 (1980).
- Anderson, R. B., Lee, C. B., and Machiels, J. C., Canad. J. Chem. Eng. 54, 590 (1976).
- Storch, H. H., Golumbic, N., and Anderson, R. B., "The Fischer-Tropsch and Related Syntheses," p. 223, Wiley, New York, 1951.
- Shultz, J. F., Karn, F. S., and Anderson, R. "U. S. Bureau of Mines Report of Investigation 6974," 1967.